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Kinematic dynamo action in a helical pipe
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Steady incompressible laminar flow of an electrically conducting fluid down a helically
symmetric pipe is investigated with regard to possible dynamo action. Both the fluid
motion and the magnetic field are assumed to be helically symmetric, with the same
pitch. Such a velocity field can be represented by its down-pipe component, v, and a
streamfunction Ψ defining the secondary cross-pipe flow.

The helical geometry automatically links the cross-pipe and down-pipe field
components and permits laminar dynamo action. It is found that the relatively weak
secondary motion, which is always present in real pipe flows, has an inhibitory effect
on the magnetic field growth and frequently suppresses dynamo action completely. In
such a case for large magnetic Reynolds number (Rm → ∞) the asymptotic structure
of the neutral mode is analysed using a streamline integral approach.

Kinematic velocity fields, without the cross-pipe flow (Ψ = 0), usually generate a
dynamo even for perfectly conducting walls. For large Rm the growing modes are
shown to have a two-layer structure with rapid tangential variation.

For appropriate pipe geometry, steady pressure-driven pipe flow is found to drive
a dynamo for moderate values (∼1000) of the magnetic Reynolds number.

1. Introduction
The ability of motion of a conducting fluid to generate and sustain a magnetic field

is important in astrophysical and geophysical contexts. On such length scales, not
only is the motion likely to have a complex turbulent structure, but also the magnetic
Reynolds number, Rm, is very high. Such dynamos typically rely on a turbulent ‘α-
effect,’ wherein averages over small-scale fluctuations arguably lead to an extra mean
field term in the driving equations (e.g. Roberts & Soward 1992).

Despite a number of ‘anti-dynamo theorems,’ which require a minimum degree
of flow complexity for dynamos to function, some flows with fairly simple structure
are known to drive a dynamo, such as the Roberts (1972) and Ponomarenko (1973)
flows. These dynamos are kinematic, in that the flow is prescribed rather than
found dynamically. Simple models with a physically realizable flow field, and which
extend into saturated states when the magnetic field reacts back on the driving
flow, are much rarer. Usually another process is required to drive a sufficiently
complex flow field, such as convection e.g. Matthews (1999), Kim, Hughes & Soward
(1999).

This paper analyses a class of problems in which steady incompressible laminar
flow of a Newtonian fluid down a pipe can drive a dynamo on laboratory length
scales, with a pressure difference the only driving mechanism. Such dynamo action is
of importance for liquid-metal pipe flows, which have been proposed as coolants for
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nuclear reactors (Plunian, Marty & Alemany 1999), and in which the flow braking
associated with dynamo action would present an operational hazard.

It is well-known that helical streamlines are advantageous for dynamos, and suc-
cessful attempts to build laboratory dynamos encourage such flow structures (see the
papers in the special issue Rädler & Cēbers 2002). Loosely speaking, the flows in
the Karlsrühe and Riga dynamo experiments resemble repectively the Roberts and
Ponomarenko velocity fields. Although in principle this paper has direct applicability
to these experiments there are two difficulties in such a comparison. Firstly, the experi-
ments are not exactly helically symmetric, and the geometry of this paper would
require modification to allow, for example, for the return flow of metal. Secondly, this
paper analyses a laminar dynamo, whereas due to the low magnetic Prandtl number
of metals, any dynamo would almost certainly be turbulent. In this paper we do not
consider the structure of turbulent helical pipe flow. This may be more of an issue
in the future when nonlinear field equilibration is considered. It is found that the
critical values of Rm in both the Riga and Karlsrühe dynamos are well predicted by
laminar models, but the agreement is poor between the measured field values and
those predicted by laminar theory (Fauve 2004).

In this paper the geometry is assumed to be helically symmetric in the precise sense
described by Landman (1990), Childress, Landman & Strauss (1989), Dritschel (1991)
and Zabielski & Mestel (1998a), and summarized in § 1. The Navier–Stokes equations
are invariant to this symmetry, and were solved for steady and unsteady pressure
gradients in Zabielski & Mestel (1998a) and Zabielski & Mestel (1998b). In this
paper the temporal behaviour of magnetic fields with the same helical symmetry will
be investigated. Crucially, the equations for the down-pipe and cross-pipe magnetic
field components are geometrically linked, without the need to resort to turbulence
to provide an ‘α-effect.’ While there may be other magnetic instabilities driven by
helically symmetric flows which are not themselves helically symmetric, experience
with the Ponomarenko (1973) dynamo suggests that modes with the same symmetry
are close to those with the fastest growing instability (Gailitis & Freiberg 1977).

It is worth noting that subject to these assumptions a pressure-driven pipe flow
which gives rise to a kinematic dynamo necessarily drives a fully nonlinear dynamo
also. For were the driving flow to be quenched by the Lorentz force, and the field
to die away, then the hydrodynamic pipe flow would once more be established on
a viscous time scale and the dynamo process would repeat. This argument relies on
the uniqueness of the steady driving flow, as found in Zabielski & Mestel (1998a). It
would not necessarily be the case for flows with more than one solution e.g. Brummell,
Cattaneo & Tobias 1998.

The earliest study of kinematic helical dynamos was by Lortz (1968), and later
Benton (1979a, b) and Eltayeb & Loper (1988). The simple, solid body motion of
the Ponomarenko (1973) dynamo was extended by Ruzmaikin, Sokoloff & Shukurov
(1988) to any kinematic flow field dependent only on cylindrical radius. Gilbert (1988)
demonstrated that the ‘fast’ dynamo action was a result of the velocity discontinuity.
Taylor–Couette flow between two cylinders can also drive a dynamo (Dobler, Frick
& Stepanov 2003; Willis & Barenghi 2002). A weakly nonlinear analysis for Taylor–
Couette flow was provided by Bassom & Gilbert (1997). The physically realizable flow
fields have a simple geometry, and rely on boundary motion to provide a sufficiently
complex flow field. In this paper the boundary is fixed and the necessary helical
motion is driven by the pipe shape. In principle, this dynamo could by driven by
gravity in a sufficiently tall, helical pipe.

The structure of this paper is as follows: In § 2 the helically symmetric problem is
formulated and different electrical boundary conditions are discussed. In § 3, a pipe of
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square cross-section with perfectly conducting walls is investigated. These can obstruct
dynamo action, in that the generated flux is restrained within the fluid domain wherein
it is wound round by the cross-pipe flow and dissipated. This tendency is illustrated
in § 3.1 by an analysis of the asymptotic structure of the neutral mode as the magnetic
Reynolds number, Rm → ∞ using a Prandtl–Batchelor streamline integral approach.
In § 3.2, the secondary flow is artificially repressed and dynamo action is found. The
growing field exhibits a spatially quasi-periodic structure as Rm → ∞ on a tangential
length scale R−1/3

m , a normal length scale R−2/9
m and with a growth rate of O(R−1/3

m ). It
is shown that normal to the surface the field has a two-layer structure, with a lower
layer of thickness R−1/3

m required to match with the boundary conditions, which are
otherwise passive.

In § 4, the external medium is assumed to have the same conductivity as the fluid,
as was the case in the Riga dynamo. The simplest case of solid body motion inside
a cylinder was considered by Ponomarenko (1973) and Gilbert (1988), and a more
general case in Gailitis & Freiberg (1980). In § 4.1 this problem is reformulated using
helical coordinates, with identical results. The effect of smoothing out the velocity
discontinuity, which is primarily responsible for the fast dynamo action, is considered.
Finally, in § 4.2, laminar pressure-driven pipe in a rectangular pipe is considered.
A dynamo is found in this geometry at a value Rm ∼ 1000. This is the first steady
laminar pressure-driven dynamo to be found. Its nonlinear evolution is currently
under investigation and will be presented in a future work. Two factors are vital to
the dynamo mechanism: firstly the ‘geometrical α-effect’ or ‘torsion effect’ which is
inherent to helical symmetry, and secondly the shear of the down-pipe flow. A third
effect, the stretching of the field along the separation line of the cross-pipe flow, is
important but frequently opposes the dynamo.

2. Mathematical formulation
In terms of cylindrical polar coordinates (r, θ, z), a scalar function is helically

symmetric if it depends only on r and φ = θ + εz, where ε is a constant. To be single-
valued, the function must also be 2π-periodic in φ. Thus it is constant on helices with
the same pitch, 2π/ε. The symmetry direction is given by the vector

H =
ez − εreθ

h2
where h = (1 + ε2r2)1/2 (2.1)

and eθ and ez are the unit vectors in the θ- and z-directions. Thus a scalar field f is
helically symmetric if H · ∇f = 0. The vector H is a non-unit Beltrami field

∇ ∧ H = −2ε

h2
H, |hH | = 1. (2.2)

Helical symmetry spans the gulf between two-dimensionality (ε = 0) and axisymmetry
(ε → ∞). A detailed description of helical symmetry is given in Zabielski & Mestel
(1998a).

As well as the helical parameter ε, which essentially measures the pipe torsion, the
pipe dimensions determine its curvature. The pipe is assumed to have a rectangular
cross-section in the poloidal plane θ =0, and occupies (b − a) < r < (b + a), and
0 < φ < φ0. The geometry is defined by the dimensionless parameters εb, a/(bhb) and
φ0 where hb =

√
1 + ε2b2. Helical effects depend on the torsion of the pipe centreline,

and increase as the parameter 2εb/h2
b increases. This is maximal at εb = 1, and

computations have concentrated on this case. It is found that the critical magnetic
Reynolds number for dynamo action increases as the helicity effects decrease.
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(a) (b)

Figure 1. (a) Square and (b) ‘tall’ helical pipes, for ε = 1, b = 2, a = 0.5, φ0 = 1, 2π/3.

In the numerical simulations the values used are a = 0.5, b = 1, ε = 1 and the two
cases φ0 = 1, 2π/3. These cases are denoted respectively the ‘square pipe’ and ‘tall
pipe’. It will be found that dynamo action occurs only for the tall pipe, which is

drawn in figure 1. The fluid domain is denoted by V , its exterior by V̂ and its
bounding surface by S.

2.1. Fluid flow

An incompressible helically symmetric velocity field can be represented as

u = H ∧ ∇Ψ + vH . (2.3)

The corresponding vorticity ω = ∇ ∧ u then takes the form

ω = H ∧ ∇(−v) + ξ H, (2.4)

where

LΨ = ξ +
2ε

h2
v, (2.5)

and the elliptic operator L is defined by

L =
h2

r

∂

∂r

(
r

h2

∂

∂r

)
+

h2

r2

∂2

∂φ2
. (2.6)

The H-component of the Navier–Stokes equations is then (Zabielski & Mestel 1998a)

∂v

∂t
+

1

r
J (Ψ, v) = G + F1 + ν

(
Lv +

2ε

h2
ξ

)
(2.7)

where G is the driving down-pipe pressure gradient per unit mass, F1 a suitable
component of the Lorentz force defined in (2.18) and ν is the kinematic viscosity. The
Jacobian J is defined by

1

r
J (f, g) ≡ 1

r

(
∂f

∂r

∂g

∂φ
− ∂f

∂φ

∂g

∂r

)
= H · (∇f ∧ ∇g). (2.8)

The H-component of the vorticity equation takes the form

∂ξ

∂t
− 2ε

h2

1

r
J (Ψ, v) +

1

r
J (Ψ, ξ ) +

2ε2

h2

(
ξ
∂Ψ

∂φ
+ v

∂v

∂φ

)
= F2 + ν

(
Lξ − 2ε

h2

(
Lv +

2ε

h2
ξ

))
(2.9)
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where F2 is the H-component of the curl of the Lorentz force as in (2.19). The
system of equations (2.7), (2.9) and (2.5) together with a non-slip condition on the
pipe boundary determines a general helically symmetric pipe flow. In this paper
only steady pressure gradients are considered so that for a fixed geometry, flows are
determined by a single parameter, the Reynolds number

Re = hb

G(2a)3

ν2
. (2.10)

For consistency with Zabielski & Mestel (1998a) this definition of Re will be used,
but it would also be possible to scale with the flow rate, or maximum velocity, giving
a numerical value typically fifty times smaller. For the kinematic problem only the
structure of the velocity field is important. The magnetic Reynolds number, Rm, is
defined based on the maximum of the down-pipe velocity, vm,

η−1 ≡ Rm =
2avm

η∗ , (2.11)

where η∗ is the magnetic diffusivity of the fluid. From now on, η may be used as a
shorthand for R−1

m . Clearly, defining Rm with respect to the mean flow rate, say, would
lead to lower numerical values, by a factor of about 4.

2.2. The magnetic field

The fluid region is assumed to have constant electrical conductivity σ and magnetic
permeability µ, so that its magnetic diffusivity is η∗ = 1/(µσ ). The helically symmetric
solenoidal (∇ · B = 0) magnetic field B is expressed analagously to (2.3) as

B = H ∧ ∇χ + B H (2.12)

so that the current density j follows from Ampère’s law

µ j = ∇ ∧ B = H ∧ ∇(−B) + γ H where γ = Lχ − 2ε

h2
B. (2.13)

The electric field E is related to j by Ohm’s law

j = σ (E + u ∧ B), (2.14)

which with Faraday’s law ∇ ∧ E = −∂ B/∂t implies the induction equation

∂ B
∂t

= ∇ ∧ (u ∧ B) − ∇ ∧ (η∇ ∧ B). (2.15)

Only cases with piecewise constant η are presented here, so that (2.15) is similar in
form to the vorticity equation. Substituting (2.3) and (2.12) into (2.15) one can then
derive the following two scalar equations:

∂χ

∂t
+

1

r
J (Ψ, χ ) = η

(
Lχ − 2ε

h2
B

)
≡ ηγ (2.16)

and
∂B

∂t
− 2ε

h2

∂χ

∂t
+

h2

r

(
J

(
v

h2
, χ

)
+ J

(
Ψ,

B

h2

))
= η LB. (2.17)

A similar set of equations was derived by Benton (1979a). Equation (2.16) is essentially
the H-component of Ohm’s law (2.14), where it is assumed that there is no externally
imposed electric field in the H-direction. Equation (2.17) is the H-component of the
induction equation (2.15).



352 L. Zabielski and A. J. Mestel

It is readily seen that the equations for B and χ , which are respectively the helical
analogues of toroidal and poloidal fields, are linked. In (2.17) the third term involves
the advection of the cross-pipe χ-lines by the down-pipe velocity v in a manner akin
to differential rotation in an astrophysical context. The second term also provides a
geometrical linkage with χ , but this effect is usually weaker. In (2.16), the linkage
with B is a consequence of the Beltrami property (2.2) of the helical symmetry
direction H that captures genuinely three-dimensional behaviour. It should be noted
that this term is proportional to η, so that any dynamo is expected to be ‘diffusive’ in
nature. Since Cowling’s theorem prohibits dynamo action in the axisymmetric (ε → ∞)
and the two-dimensional (ε = 0) cases, for a successful dynamo the torsion terms of
non-planar geometry must play a significant rôle.

Calculation leads to the Lorentz force, j ∧ B and its curl. In the Navier–Stokes
equations (2.7) and (2.9),

F1 = h2 H · ( j ∧ B) = − 1

µr
J (B, χ), (2.18)

F2 = h2 H · [∇ ∧ ( j ∧ B)] =
1

µ

(
2ε

h2

1

r
J (B, χ) − h2

r
J

(
γ

h2
, χ

)
+

2ε2

h2
B

∂B

∂φ

)
. (2.19)

2.3. Boundary conditions

In this paper, the fluid boundary, S, is rigid and stationary so that u = 0 in S. To
complete the problem description, electromagnetic conditions must be specified on S

where σ and µ may be discontinuous. The effect of a tangential slip velocity is also
considered below as in the Ponomarenko case. If square brackets are used to denote
jumps across an interface with normal n, the standard continuity conditions are

[B · n] = 0, [n ∧ B/µ] = j s and [n ∧ E] = 0 , (2.20)

where j s is a surface current, which exists only when one medium is a perfect
conductor. Assuming this is not the case, and that the permeability, µ, is continuous,
the first two conditions in (2.20) imply continuity of B, that is, of χ , n · ∇χ and B .
Now from (2.12), (2.13) and (2.14),

n ∧ E = n ∧ ( j/σ − u ∧ B) (2.21)

= −η(n · ∇B)H + ηγ n ∧ H − (B · n)u, (2.22)

since u · n = 0 on S and H · n =0 by the symmetry. Continuity of the tangential
n ∧ H-component of (2.21) is dealt with by (2.16) and the continuity of χ , but the
H-component provides a condition on n · ∇B . Thus the boundary conditions in the
general case are

[χ] = 0, [n · ∇χ] = 0, [B] = 0, [η n · ∇B] = −(n · B) [v]. (2.23)

A discontinuity in n · ∇B therefore results from a discontinuity either in the electrical
property η or in the velocity field. Three particular limits of (2.23) will be considered,
when the external conductivity is zero, infinite, or the same as in the fluid.

The smoothest boundary conditions occur when η is the same in V and V̂ , so
that the exterior is filled with solid material of the same conductivity as the fluid.
Then if the flow obeys the no-slip condition, χ , B and their normal derivatives are
continuous:

[χ] = 0, [n · ∇χ] = 0, [B] = 0, [n · ∇B] = 0. (2.24)
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(a) (b) (c)

Figure 2. Velocity patterns at Re =103hb for the square pipe: (a) cross-pipe streamfunction
Ψ ; (b) down-pipe velocity v; (c) down-pipe vorticity ξ . max(Ψ ) = 5 × 10−4, max(v) = 0.024.
The inside of the pipe is on the left.

If, as in the Ponomarenko dynamo (§ 4.1), [v] 	= 0, then a discontinuity in the normal
derivative of B is needed.

When the external conductivity is zero, j =0 in V̂ , which, from (2.13), requires that

Lχ =
2ε

h2
B0 B0 = const. in V̂ (insulating exterior) (2.25)

and B , χ and n · ∇χ are continuous across S. If conditions at infinity are such that
no net current flows in the H-direction then B0 = 0.

A perfectly conducting medium can support no electric field, so that the tangential
electric field in the fluid must vanish by (2.20). Further, by Faraday’s law, no growing
B can exist in V̂ . Thus the internal normal field B · n = 0, so that χ = 0, but the
tangential field need not vanish owing to the possible surface current. Thus (2.21)
requires γ = 0 and n · ∇B =0 on S. From (2.13) and (2.16), γ = 0 if χ = 0 on the rigid
boundary S. Thus the appropriate boundary conditions are

χ = 0 and n · ∇B = 0 on S (perfectly conducting walls). (2.26)

The perfectly conducting walls keep the magnetic field trapped within V .
The above boundary conditions have assumed no variation in magnetic per-

meability, µ, across S. One could also postulate a ferromagnetic boundary, for which
µ → ∞ in V̂ . Then, from (2.20), the tangential component of B must vanish on the
fluid boundary, so that

B = 0 and n · ∇χ = 0 on S (ferromagnetic walls). (2.27)

2.4. Numerical simulations

The equations (2.16) and (2.17) with an appropriate version of (2.23)–(2.27) are solved
numerically using finite differences. An implicit time-stepping method is used, second
order in space and time, similar to that described in Zabielski & Mestel (1998a, b).
For the kinematic problem, the Lorentz force terms F1 and F2 are neglected and
the fully developed Navier–Stokes flow can be found independently, whereas for the
dynamic problem (2.7) and (2.9) would have to be solved simultaneously. The flow
structure depends on Re, and two cases are shown in figures 2 and 3. In each case
the inside of the helix is on the left and the pipe spirals clockwise as in figure 1.
Panel (a) shows the contours in the (r, φ)-plane of the secondary flow streamfunction,
Ψ , (b) gives the contours of the down-pipe velocity v, and the down-pipe vorticity
component ξ is shown in (c). The secondary flow is always present, although its
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(a) (b) (c)

Figure 3. Velocity patterns at Re = 203hb for square pipe: (a) Ψ ; (b) v; (c) ξ .
max(Ψ ) = 4 × 10−4, max(v) = 0.02. At this Re the secondary flow has a separation point.

magnitude is typically about 50 times smaller than the down-pipe component in
the parameter ranges considered here. For low Re it takes the form of a single
anticlockwise gyre. As Re increases, a second clockwise gyre appears at the bottom
of the figure, with associated separation and attachment points. As Re → ∞ the
symmetrical configuration of Dean flow is approached (Zabielski & Mestel 1998a).
This structure of the secondary flow is highly significant, as the stretching of magnetic
field is strong near separation points of the secondary flow.

As the time evolution is followed an eigenvalue λ is identified such that

B ∼ Re [B0(r, φ) exp(λt)] as t → ∞. (2.28)

For an arbitrary initial state, a qualitative eigenfunction structure usually appears
fairly quickly. However, considerable care is required to ensure that the grid size and
time step are small enough to resolve the small, complex eigenvalue. The method
used is not the most efficient for calculating eigenvalues, but was chosen with a
view to future extension of the calculation into the dynamic regime when the field
reacts back on the driving flow. Sometimes thin layer regions develop, but a grid size
160 × 160 in the (r, φ)-plane over the pipe cross-section proved adequate for the Rm

range considered.
The eigenvalue λ is usually complex, and its real part typically becomes positive

at a value of Rm in the range (100, 1000), if dynamo action occurs. It decays to
zero algebraically as Rm → ∞, so that the dynamo is ‘slow’. The corresponding
eigenfunctions exhibit a variety of structures, and depend upon the magnetic boundary
conditions imposed.

3. Perfectly conducting walls
When the exterior is perfectly conducting, so that (2.26) is satisfied, the field is

confined to the fluid region. It is therefore wound up very tightly by the secondary
motion to a level where diffusion can act. Regions with high gradients are therefore
anticipated for high Rm.

A further feature of this boundary condition follows from integrating Faraday’s
law over a pipe cross-section. As the tangential component of E vanishes over the
boundary, it follows that the integral of ∂ B/∂t over the cross-section is zero. The
total flux of B along the pipe is thus constant, and hence the equations must have a
neutral mode, for which λ=0. If no dynamo action occurs, a general initial condition
approaches this mode. If the velocity is zero, the neutral mode is just a potential field,
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(a) (b) (c)

Figure 4. The neutral mode for Rm = 303, Re = 103hb and square pipe: (a) cross-pipe field χ;
(b) downpipe field B; (c) downpipe current, γ . max(χ )/max(B) = 0.019 The walls are perfectly
conducting.

(a) (b) (c)

Figure 5. The neutral mode for square pipe with Rm = 303, Re = 203hb: (a) χ; (b) B;
(c) γ . max(χ )/max B =0.011. The walls are perfectly conducting. Stretching occurs along
the separatrix of Ψ .

B = ∇f for some function f , satisfying (2.26). This neutral mode is a consequence of
the perfectly conducting walls. As the kinematic problem is linear it does not interact
with any of the other modes, although its spatial structure is found to be similar.

For the square pipe, with flow structures such as those of figures 2 and 3, no growth
is found for any value of Rm, and the field decays towards the neutral mode. Typical
examples are shown in figures 4 and 5 for a fairly high value of Rm. Comparison
with figures 2 and 3 indicates a strong dependence of the field on the secondary
motion as exhibited by the shape of the Ψ contours. There also appears to be an
asymptotic structure as Rm → ∞ with a core and boundary layers. This asymptotic
limit is considered below.

3.1. Neutral mode as Rm → ∞; Prandtl–Batchelor analysis

In this section it is demonstrated how the asymptotic structure of the neutral mode at
high Rm can, in principle, be derived from the driving velocity field using a streamline
integral approach. This method is discussed in Childress & Gilbert (1995) but there
are few geometries for which it can be used. There are strong similarities with steady
hydrodynamic problems with closed streamlines. The analysis also holds for weakly
growing or decaying modes with λ∼ η. In the fluid core, as η → 0 expand

χ ∼ χ0 + ηχ1 + · · · B ∼ B0 + · · · λ ∼ ηλ0 + · · · (3.1)
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so that in (2.16) and (2.17), at leading order,

J (Ψ, χ0) = 0,

J

(
v

h2
, χ0

)
+ J

(
Ψ,

B0

h2

)
= 0.

or

χ0 = χ0(Ψ ),
B0

h2
= f (Ψ ) + χ ′

0(Ψ )
v

h2
. (3.2)

Thus in a manner akin to the Euler equations, the steady magnetic field is functionally
related to the velocity streamfunction. As in Prandtl–Batchelor theory (Batchelor
1956), these functions are determined at high Rm by integrating the magnetic field
equations (2.16), (2.17) over the helical path Ψ = const. Although the streamlines
of the full flow are not closed because of the down-pipe motion, nevertheless the
advective velocity terms J (Ψ, .) still integrate to zero under helical symmetry around
a Ψ -contour (cf. Childress et al. 1989). Thus the integrated effects of the small diffusive
terms must balance and it can hence be shown that

0 =

∮
Ψ

(
Lχ0 − 2ε

B0

h2

)
dl

q
, (3.3)∮

Ψ

1

r
J

(
v

h2
, χ1

)
dl

q
=

∮
Ψ

1

h2
LB0

dl

q
, (3.4)

with the secondary flow speed q = (1/h)|∇Ψ |, and dl denotes arclength in the (r, φ)-
plane. After some manipulation one finds that (3.3) and (3.4) imply that f (Ψ ) and
χ0(Ψ ) must satisfy the ODEs

a2χ
′′
0 + a1χ

′
0 = 2εa0f, (3.5)

c2f
′′ + c1f

′ + c0f + b3χ
′′′
0 + b2χ

′′
0 + b1χ

′
0 =

∮
1

r
J

(
v

h2
, χ1

)
dl

q
, (3.6)

with the coefficients

a0 =

∮
Ψ

dl

q
, a1 =

∮
Ψ

ξ
dl

q
, a2 =

∮
Ψ

|∇Ψ |2 dl

q
,

b1 =

∮
Ψ

1

h2
Lv

dl

q
, b2 =

∮
Ψ

(
2

h2
∇v · ∇Ψ +

v

h2
LΨ

)
dl

q
, b3 =

∮
Ψ

v

h2
|∇Ψ |2 dl

q
,

c0 =

∮
Ψ

4ε2

h4

dl

q
, c1 =

∮
Ψ

(
LΨ +

4ε2r

h2

∂Ψ

∂r

)
dl

q
, c2 =

∮
Ψ

|∇Ψ |2 dl

q
,

where all the ai = ai(Ψ ), bi = bi(Ψ ), ci = ci(Ψ ) and are calculable from the known
velocity field. To evaluate the term on the right-hand side of (3.6) it is necessary to
evaluate (2.16) at O(η), when

1

r
J (Ψ, χ1) = Lχ0 − 2ε

h2
B0 − λ0χ0. (3.7)

For the neutral mode λ0 = 0. This determines χ1 apart from an arbitrary function
of Ψ which does not contribute to the integral in (3.6). The differential equations
(3.5) and (3.6) hold in any closed Ψ -region, say 0 <Ψ <Ψm where Ψ = Ψm at the
stagnation point where ∇Ψ = 0. The equations are singular at both the endpoints.
Four boundary conditions are required to determine f and χ0 if the eigenvalue λ0 is
regarded as unknown.
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Figure 6. Neutral mode: B/h2 as a function of Ψ for v = 0 and Ψ as in figure 2.
(a) Scatterplot of the steady solution to (2.16) and (2.17). (b) Solution of (3.6).

Writing p =
√

2
√

|Ψ − Ψm|, a local analysis about the point where Ψ =Ψm shows
that

χ ′
0 = 0 and

df

dp
+ 1

2
v
d3χ0

dp3
= 0 at Ψ = Ψm. (3.8)

One condition on the wall Ψ = 0 is straightforward to apply,

χ0(0) = 0. (3.9)

The boundary condition (2.26) cannot be imposed subject to the constraint (3.2) and
a boundary layer of thickness η1/3 is required. The final boundary condition derives
from an integral over this wall layer. Writing x =

√
Ψ it takes the form

α
df

dx
+ β

dχ0

dx
+ γ

d2χ0

dx2
+ δf = 0 on Ψ = 0, (3.10)

where α, β , γ and δ are known in terms of v and Ψ . In general f (Ψ ) has a square-root
singularity at Ψ = 0.

It is therefore possible in principle to determine the asymptotic form of the field
by solving the ODEs (3.5), (3.6) with (3.7) subject to the conditions (3.8), (3.9) and
(3.10). The coefficients are expressed as path integrals along known contours, unlike
in similar hydrodynamic problems where the vorticity is constant on streamlines
which must themselves be found as part of the solution. Although evaluation of the
coefficients and boundary conditions is tedious, the resulting problem for χ0 and f is
linear, and homogeneous. As it has been shown that a neutral mode must exist with
an amplitude determined by the down-pipe flux, it follows that the problem has an
eigensolution, and one of the boundary conditions is redundant.

Note, however, that this structure applies only on a single set of nested streamlines.
For a flow field such as figure 3 giving rise to figure 5, different functions f (Ψ ) and
χ0(Ψ ) should be used in each separate gyre. These must be matched across an η1/3

layer about the stagnation streamline. The method is illustrated in figure 6 for the
simple kinematic flow with a single Ψ -gyre as in figure 2 but with v =0. This latter
condition ensures bi = 0, and also that the inconvenient term on the right-hand side
of (3.6) vanishes. In figure 6 the calculated values of B/h2 for Rm =203 are plotted
against Ψ for the entire grid. Except near the wall, the data collapse onto a single
curve, as expected. Also, shown in figure 6(b) is the function f (Ψ ) obtained by solving
(3.6). The resulting asymptotic form of f (Ψ ) is consistent with the numerical results
for Rm = 203, but there is still some quantitative disagreement for this value of Rm, with
the ODE predicting a slightly sharper gradient. Overall, the entire approach, while of
undoubted theoretical interest, appears overelaborate for quantifying the asymptotic
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structure as Rm → ∞ of a neutral mode, which is readily obtained numerically for
finite Rm. It would only be worthwhile should the fastest growing mode have λ∼ η as
η → 0, whereas usually λ∼ η1/3.

Numerical calculations suggest that no helically symmetric dynamo occurs for
pressure-driven flows down the square pipe a = 0.5, b = 1, ε = 1, φ0 = 1 for any values
of Re and Rm. Likewise, no growth was found if the exterior was insulating or of finite
conductivity. The secondary flow in this geometry is too strong over the numerically
accessible Re-range, leading to ‘flux expulsion’ and quenching of the dynamo. By
artificially reducing the size of this secondary flow, however, magnetic growth is
obtained in the next section for flows which are kinematically admissable but do not
correspond to the genuine pipe flow. For Re =103hb, the real flow has a secondary
pipe component which is about ten times too large for dynamo action. Nevertheless,
dynamo action in this geometry may theoretically be possible at extremely high
Reynolds number. As Re (or for small curvature a Dean number) approaches infinity,
the ratio of the secondary to primary core velocities tends to zero for steady laminar
flow, e.g. Zabielski & Mestel (1998a). Such flows would probably drive a kinematic
dynamo, as the secondary flow will be negligible. Some numerical results bear this
conjecture out, but the resolution of the viscous boundary layer is questionable and
they are not presented here. In reality, these steady flows will certainly be unstable
and so are of questionable practical relevance.

More importantly, a dynamo is found to occur with perfectly conducting walls
for the genuine laminar flow in the tall pipe with φ0 = 2π/3. This case is described
briefly in Zabielski & Mestel (2004). This geometry with finite external conductivity
is investigated in § 4.2.

3.2. Kinematic dynamo with no cross-pipe flow (Ψ = 0)

To demonstrate the obstructive nature of the cross-pipe flow as regards dynamo
action, this section investigates the simpler flows with Ψ = 0. Equations (2.16) and
(2.17) then take the form

λχ = η

(
Lχ − 2εB

h2

)
, (3.11)

λ

(
B − 2εχ

h2

)
= −h2

r
J

(
v

h2
, χ

)
+ η LB. (3.12)

The simplest flow field of this form is the solid body motion of the Ponomarenko
dynamo (Ponomarenko 1973). Such a flow field in helical coordinates takes the form

u = vch
2 H = −vcεreθ + vcez, vc = const. (3.13)

Putting v = vch
2 in (3.11) and (3.12) it is clear that no velocity terms remain in the

equations. The Ponomarenko dynamo requires an external region and is driven by the
discontinuous flow field and the boundary conditions (2.23). In the case of perfectly
conducting boundaries, however, the velocity (3.13) leads to

∂ B
∂t

= η∇2 B =⇒ ∂ j
∂t

= η∇2 j . (3.14)

Since the boundary conditions (2.26) require n ∧ j = 0 on S it follows that

∂

∂t

∫
V

1
2
| j |2 dV = −η

∫
V

|∇ ∧ j |2 dV
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(a) (b)

Figure 7. The magnetic field for Rm = 503, with Ψ = 0 and v as in figure 3. A rapid
tangentially varying structure emerges. (a) χ , (b) B; max(χ )/max(B) = 3 × 10−4.

0 20 40 60 80 100

0.002

0.004

0.006

0.008

0.010

0.012

Re[λ]

Im[λ]

0 20 30 40 50

Rm
1/3

0.02

0.04

0.06

Figure 8. The real and imaginary parts of the dominant eigenvalue for Ψ =0 and v as in

figure 3. Also shown is the asymptotic result Re[λ] ∼ 0.545R
−1/3
m .

and hence the current cannot grow in this case, as observed in Gailitis & Freiberg
(1980). No such constraint holds if the linkage term J (v/h2, χ) does not vanish, and
the velocity field of figure 3 is now considered, but with the cross-pipe component
Ψ = 0. This kinematic flow is found to excite a dynamo, and in figure 7 the growing
eigenfunction is drawn for a large value of Rm. As time evolves, the eigenfunction
travels around the boundary for moderate Rm, but for higher values it appears,
rather, to oscillate along the lower wall. Figure 8 depicts the behaviour of the real
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and imaginary parts of the growth rate λ with Rm. These are of similar order, and it
seems that λ∼ R−1/3

m as Rm → ∞. It becomes harder to resolve Im[λ] as Rm increases,
as the data have to be collected over a longer time. The imaginary part exhibits a
slight kink near the maximum of the real part.

The numerics suggest that as Rm increases the preferred mode develops rapid
variation tangential to the boundary. In terms of local coordinates (n, s) normal and
tangential to the boundary, one might therefore seek a solution to (3.11) and (3.12)
of the form χ ∼ eλt+iks , for large k and small η. Equation (3.11) suggests the balance
λ∼ ηk2 and λχ ∼ ηB so that at leading order

(λ + ηk2)χ = −2εηB

h2
, (3.15)

(λ + ηk2)
B

h2
= ikχ

1

h

∂

∂n

( v

h2

)
≡ v1ikχ, (3.16)

say, where v1 is constant on the fast s-scale 1/k. These relations give the leading-order
behaviour of λ:

λ = −ηk2 ± (−2εηv1ik)1/2 =⇒ Re[λ] = (εv1ηk)1/2 − ηk2, (3.17)

choosing the root with the greater real part. Now as η → 0, it is clear that Re[λ] is
positive. Furthermore, it is easy to calculate the value of k for which this real part is
maximum. This value scales as k ∼ η−1/3 as η → 0 giving

Re[λ] =
(
ε2a2

1η
)1/3 [

4−1/3 − 16−2/3
]

+ O
(
η5/9

)
. (3.18)

It should be noted that this is a local structure, and that a1 varies slowly over the
boundary. For the square cross-section used here, a1 is maximum towards the inner
boundary. For the flow of figure 7, equation (3.18) predicts Re[λ] ∼ 0.545R−1/3

m as
shown on figure 8. The presence of ε in (3.18) indicates that it is peculiar to helical
symmetry. Note that it vanishes as ε → ∞ as εa1 → 0 in that limit (Zabielski & Mestel
1998a).

The above calculation ignores the boundary conditions, as the n-derivatives do
not appear at leading order. A more precise analysis for a general cross-section S,
deriving the structure normal to the surface, is given in the Appendix. To summarize
the results, kinematic dynamos usually exist for flow fields with only a down-pipe
component, even those satisfying a no-slip condition with perfectly conducting walls.
At high Rm, the growing modes vary on a small tangential scale and a slightly
larger normal scale (η1/3 and η2/9 respectively). Adjustment to the surface boundary
conditions occurs over a passive sublayer of thickness η1/3.

3.3. No primary flow

For completeness, flows with v = 0 are now considered briefly. Equations (2.16), and
(2.17) become

∂χ

∂t
+

1

r
J (Ψ, χ ) = η

(
Lχ − 2ε

h2
B

)
, (3.19)

∂B

∂t
+

h2

r
J

(
Ψ,

B

h2

)
= η LB +

2ε

h2

∂χ

∂t
. (3.20)

The important ‘differential rotation’ linkage term in (3.20) disappears in this case, and
only the weaker ∂χ/∂t term remains. In the cylindrical geometry of Ruzmaikin et al.
(1988), Gilbert (1988) and Bassom & Gilbert (1997), where the pipe is replaced by a
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complete cylinder and ψ =ψ(r), a dynamo may occur. Here, in a pipe with a no-slip
boundary and perfectly conducting walls, no growing modes were found numerically.
A kinematic flow with this structure was used as a simple test of the neutral mode
analysis of § 3.1.

It has been shown in this section that no helically symmetric dynamo results from
pressure-driven flow in the square pipe with perfectly conducting walls unless the
cross-pipe component is artificially weakened. Similar results are found when the
exterior conductivity is finite, so that it is the geometry, rather than the electric
boundary conditions, which inhibits the dynamo.

In the next section, flow in the tall pipe of figure 1 is considered. The cross-pipe
stretching is weaker in that case and a dynamo is found for the full laminar pipe flow.

4. Dynamo action with conducting exterior
In this section, the magnetic field is permitted to diffuse out of the pipe, as is likely

to occur in practice. Firstly, the Ponomarenko (1973) dynamo is rederived and then
it is shown that steady laminar pipe flow acts as a dynamo in this case.

4.1. The Ponomarenko dynamo

As discussed in (3.13), for the well-known Ponomarenko dynamo, the velocity terms
disappear in the helical formulation. For simplicity, it is usual to assume the same
diffusivity η inside and outside the cylinder r =1. The solution to (2.16) and (2.17)
then takes the form inside the cylinder, following Kelvin (1880)

χ = (a1Im(νr) + a2rI
′
m(νr))eimφ where ν =

√
λ/η + m2ε2. (4.1)

A similar representation holds for B , while in r > 1 the representation is χ = a3Km +
a4rK

′
m. The boundary conditions (2.24) then lead to four linear conditions on the

constants ai , in which the discontinuity in v at r = 1 is crucial. After some algebra,
this reduces to

imε(Km(ν)I ′
m(ν) + Im(ν)K ′

m(ν) = ην . (4.2)

Not surprisingly, this is in exact agreement with the result obtained using cylindrical
coordinates, when a helically symmetric mode is sought, e.g. Gilbert (2003).

A test of the numerical code was conducted as follows. The velocity discontinuity
across r = 1 is smoothed out over about 10 grid points and a perfectly conducting
boundary is introduced at r =2, on which the conditions χ = 0 and ∂B/∂r = 0 are
imposed. In the φ-direction 2π-periodicity is imposed. In figure 9 the fastest growing
solution obtained is drawn when Rm = 103 and ε =1. The familiar Ponomarenko
structure appears, with in this case a mode m =4 and a growth rate Re(λ) = 0.047.
For the pure Ponomarenko problem with a velocity v(r) discontinuous at r =1, m =4
has Re(λ) = 0.0475 but the preferred mode has m = 3 and Re(λ) = 0.0477, in keeping
with (4.2). There is thus a small difference between the numerical and theoretical
solutions. The boundary at r = 2 has minimal effect, as the field decays exponentially
away from r = 1. More significant is the distance δ over which v(r) falls to zero.
This alters the preferred mode when δ ∼ R−1/3

m . For the case presented δ = 0.1 and the
growth rates are affected. As δ is decreased, it is found that the theoretical values are
approached.

4.2. A laminar pressure-driven dynamo

In this section it is shown that the steady flow of conducting fluid in a helical pipe
driven by a pressure difference can drive a dynamo. Three cases have been considered:
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Figure 9. A Ponomarenko-like dynamo with a continuous velocity field for Rm =103. The
H-component B is shown with the axis of the cylinder at the bottom. The real part of the
growth rate is 0.047 and the fastest growing mode has m= 4 as shown. For the discontinuous
velocity field m= 3 is maximal with a growth rate 0.0477 in accordance with (4.2), whereas
m= 4 has a growth rate of 0.0475.

Grid Rm = 153 Rm = 173 Rm = 203

120 × 180 0.00484632 + i0.0103017 0.00444049 + i0.00468306 0.00330619 + i0.00199776
160 × 240 0.00477356 + i0.0101948 0.0043816 + i0.00463633 0.00327049 + i0.00197132
240 × 360 0.00467345 + i0.0102098 0.0043424 + i0.00468166 0.00325175 + i0.00198048

Table 1. Table of growth rates for the tall pipe flow of figure 10 and the same conductivity
inside and out.

when the conductivity of the exterior region is zero, infinite or the same as in the
interior. Only the latter case is presented here.

Equations (2.16) and(2.17) are now solved in both V and V̂ , with zero velocity in V̂ .
The exterior domain is rendered finite by introducing a perfectly conducting surface
at r = rmax on which χ = 0 and ∂B/∂r = 0. In the results presented here, rmax = 2. The
field decays exponentially in the exterior and is not very sensitive to the value of rmax .

The appropriate conditions on the axis r = 0 are ∂B/∂r = 0 and ∂χ/∂r = 0. In the
φ-direction 2π-periodicity is imposed. The exterior grid was uniform in the r-direction,
but stretched smoothly in the φ-direction to provide greater resolution in the areas
of interest.

In figure 11 the fastest growing eigenfunction is drawn for Rm = 203. For the sake
of compactness, only a portion of the external region is shown in the periodic φ-
direction. Comparison with figure 10 illustrates the importance of field stretching
along the separatrix of the cross-pipe motion as Rm increases. The active dynamo
resides in the region of weak cross-pipe flow. In figure 12, the variation of the real
and imaginary parts of the corresponding growth rate is drawn. Growth occurs for
Rm � 123 and is maximal for Rm  153. As Rm → ∞, it appears that λ∼ R−1/3

m .
Special attention was given to a few cases to determine the robustness of the

results to variations in the spatial and temporal step lengths. The structure of the
eigenfunction varies relatively little, but it is much harder to obtain the complex
eigenvalue accurately. For a fixed spatial grid, the time step was decreased to a level
where the eigenvalue as calculated from an average over several cycles did not change.
As the grid size is decreased, the convergence of the imaginary part of the eigenvalue
is non-monotonic. Typical variation of λ with grid size is shown in table 1.
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(a) (b) (c)

Figure 10. Flow in tall pipe for Re = 103hb: (a) Ψ ; (b) v; (c) ξ . The second ψ-gyre is very
weak, permitting dynamo action.

(a) (b) (c)

Figure 11. Fastest growing mode for Rm =203 and flow as in figure 10: (a) χ; (b) B; (c) γ .
Same conductivity inside and out. Only part of the external domain is shown.

The results in figures 11 and 12 use a 240 × 360 grid over the entire computational
domain. The real and imaginary parts of λ are found to be of similar magnitude,
although when perfectly conducting walls are used the imaginary part is very small,
perhaps zero. The time-evolutionary method is not the most efficient for calculating
eigenvalues, but was chosen with a view to future extension into the nonlinear regime.

Although it is not easy to obtain the growth rates to high accuracy, it is certain
that dynamo action can occur for helically symmetric steady pipe flow. Whether or
not such action occurs seems to be determined by the pipe shape, rather than by the
magnetic boundary conditions, which affect more the critical value of Rm.
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Figure 12. The behaviour of λ(Rm) for the tall pipe with Re = 103hb and the same
external conductivity.

The mechanism seems to be as follows: ‘poloidal’ field, χ , is wound round by
gradients in the ‘toroidal’ velocity v to generate toroidal field, B . The helical symmetry
ensures that ηB can act as a source term for χ . Simultaneously, both χ and B are
stretched in the (r, φ)-plane by the poloidal velocity Ψ , to a level where they can be
dissipated. For the square pipe, the cross-pipe flow obliterates the dynamo. However,
for the tall pipe, the field can grow in the weaker of the two circulatory regions of the
secondary motion. A dynamo is also observed in this case for perfectly conducting
walls (Zabielski & Mestel 2004) and for very weakly conducting exterior.

The nonlinear saturation of these dynamo modes is currently under investigation
and the resuts will be presented in a future paper.

5. Concluding remarks
It has been shown that the three-dimensional nature of steady helically symmetric

solutions to the steady Navier–Stokes equations can drive a dynamo without recourse
to a turbulent α-effect or similar. This is the first steady pressure-driven dynamo to
be found. The critical Rm ∼ 1000 but it should not be forgotten that Rm was defined
with respect to the maximum down-pipe velocity, so that the effective Rm is arguably
smaller. This may be still more significant for structures where the growth occurs
close to the pipe boundary, and the local v is noticeably smaller.
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This paper has only considered steady laminar flow, though in practice a laboratory
dynamo would almost certainly be turbulent. The mean velocity profiles for turbulent
flow would differ from those considered above, but should also drive dynamos.
Calculations were performed for potential flow, which is a very simple model of
mean turbulent flow, and dynamo growth was obtained. However it is not clear how
nonlinear saturation should be included in this case.

Dynamo action has been found only in cases where the cross-pipe flow is weak.
The stagnation point structure, where the growing modes exhibit strong stretching
along the separatrix, has a critical effect. It has been argued that a somewhat ideal
laminar flow at extremely high Re may drive a dynamo even in the square pipe case,
but moderate Re suffices for the tall pipe. The dynamo action appears also to be
opposed, but not prevented, by perfectly conducting walls.

Only those modes with the same helical symmetry as the flow have been considered.
It is thus conceivable that dynamo instability might occur for some flows which have
been found stable in this paper; clearly, however, some dynamo action will occur when
predicted here, even should a non-symmetric mode have slightly higher growth rate.

The results are relevant to the construction of laboratory dynamos. In the Riga
dynamo the external medium is stationary liquid metal which motivated the choice of
external conductivity in § 4.2. Dynamo action for the tall pipe is also found for insulat-
ing, very weakly conducting and perfectly conducting exteriors. The dynamos found
in this paper can be extended into the nonlinear regime and this work is in progress.

This collaborative work was supported by the EPSRC grant GR/R71191. Dr
Zabielski is grateful to the Mathematics department of Imperial College for its
hospitality.

Appendix. Eigenfunction asymptotics when ψ = 0 as in § 3.2
In this appendix, the structure of the growing mode with ψ = 0 is investigated in

the limit η → 0. Near the surface S, with normal and tangential coordinates (n, s),
solutions are sought ∝ eλt+iks with k ∼ η−1/3 and λ∼ η1/3. For a small scale δ to be
determined but with kδ � 1, define y = n/δ and expand

λ = η1/3(λ0 + δλ1 + O(δ2)),
1

h

∂

∂n

(
v

h2

)
= v1 + δv2y + O(δ2) (A 1)

where the vi vary with s on an O(1) scale. The operator L then locally takes the form

Lχ =
χyy

δ2
− k2(1 + cδy)χ + O(k, 1/δ)

where c(s) is determined by the local geometry. On a wall with φ constant c = 0.

Writing B̂ = B/h2 and noting that L(B/h2) = (1/h2)L(B) + O(k), (3.11) and (3.12)
become to first order

(λ + ηk2)χ + 2εηB̂ =
η

δ2
χyy − (ck2ηδ)yχ, (A 2)

(λ + ηk2)B̂ − v1ikχ =
η

δ2
B̂yy − (ck2ηδ)yB̂ + v2ikδyχ. (A 3)

For flows not satisfying a no-slip condition, there would be an additional term vsχn

from the Jacobian in (A 3) and the structure would be different.
Taking k = κη−1/3, where κ = O(1), the terms on the right-hand side of (A 2) and

(A 3) are of the same order when

δ = η2/9.
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Thus introducing the vector x = (χ, η2/3B̂)T , (A 2) and (A 3) take the form

Ax + λ0x = δ[xyy − y Cx − λ1x] (A 4)

where

A =

(
κ2 2ε

−iκa1 κ2

)
and C =

(
−cκ2 0

iκa2 −cκ2

)
. (A 5)

In the singular limit δ → 0, this equation reduces to (3.15) and (3.16), with solution

x = g(y)x0 + O(δ) (A 6)

where x0 is the constant eigenvector of A corresponding to λ0. The amplitude g(y)
is determined at next order in δ, by imposing orthogonality with the solution to the
adjoint problem (the Fredholm alternative).

Defining the eigenvectors Ax0 = −λ0x0 and A T w0 = −λ0w0 where the overbar
denotes a complex conjugate, then in (A 4) x has a solution at order δ only if

g′′ − βyg − λ1g = 0 where β =
wT

0 Cx0

wT
0 x0

. (A 7)

One boundary condition on g derives from x → 0 as y → ∞. At the fluid surface S

an appropriate version of (2.26) should be applied. However, when η = 0, it follows
from (A 6) that χ ∝ B , and the conditions χ = 0 and By =0 cannot be applied
simultaneously to (A 4). A lower layer is necessary in this case, in which n ∼ s ∼ η1/3.
Writing n= η1/3Y , in this lower layer to leading order

xYY = Ax + λ0x,

whose solution with appropriate behaviour as Y → ∞ takes the form

x = (d1 + d2Y )x0 + d3e
−µY x̃

for constants di , where x̃ is the other eigenvector of A and µ has a positive real part.
It is possible to satisfy the conditions χ = 0 and BY = 0 on Y = 0 only if d2 	=0. This
implies x ∼ Y as Y → ∞ and matching with the upper layer then requires x ∼ y as
y → 0, so that g(0) = 0 in (A 6).

The appropriate boundary conditions on the outer layer (A 7) to match with the
core and the lower layer are thus

g(0) = 0 and g → 0 as y → ∞. (A 8)

The Airy equation (A 7) with (A 8) fixes the eigenvalue perturbation λ1 and the
leading-order amplitude g(y). The solution is

g(y) = Ai
[
β1/3y + λ1β

−2/3
]
.

The zeros of the Airy function occur on the real axis, which determines the phase
relation between β and λ1. This demonstrates the consistency of the arguments in
§ 3.2.
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